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Abstract 

The demand for high-quality customized products compels manufacturers to adopt batch production. 

To better plan their production cost, most manufacturers must predict their production yield rate. However, 

existing approaches to predicting the yield rate of batch production systems are either missing or require 

prohibitively large data sets and long computational times. Based on first pass yield, one approach to 

predicting the per-batch yield rate involves using the per-machine yield rate in a given production run. 

However, for most manufacturers, the actual per-machine yield rates are unknown and might be affected by 

multiple factors. Therefore, we propose an approach to predict the per-batch yield rate based on an estimated 

per-machine yield rate. By using data from a so-called T-company, the proposed approach could yield 

next-week predictions of per-batch yield rates at an average accuracy of 91.86% and could do so for 5 

consecutive weeks with an average accuracy of more than 90%. Additionally, to validate our method, we 

conducted simulations to generate per-machine yield rates and batch data of sizes similar to T-company data. 

The average accuracy of the estimated per-machine yield rates was 92.06%.  
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1. Introduction 

The dynamic nature of market demand compels most manufacturers to offer high-quality customized 

products [1], and those products are usually manufactured in batches [2]. Production planning for batch 

systems requires considerable effort because it involves numerous products, production stations, and 

machines. In this context, it is crucial for manufacturers to have advance knowledge of the yield rates of their 

products so that they can better plan their production costs. Furthermore, it allows manufacturers to adjust 

their parameters and estimate and evaluate their production costs [3–5].  

Many approaches to predicting yield rate in manufacturing use either macro yield modeling or micro 

yield modeling [6]. However, research on the application of these approaches to batch production systems has 

not been conducted. Furthermore, previously developed approaches are potentially unsuitable because they 

require prohibitively large data sets and long computational times. Although manufacturers can plan which 

machines to use in the production sequence of future product batches, doing so based on first pass yield 

(FPY) [7], one simple approach to predicting the per-batch production yield rate involves using the actual 

yield rates of all machines associated with the production of a given batch. In this approach, the actual 

per-machine yield rate can be calculated based on the number of observed defective products generated by a 

particular machine, and the defective products can only be observed using quality inspection devices. 

However, it is expensive to use quality inspection devices for all production machines [8]. Consequently, 

manufacturers may reduce the number of inspection devices if possible and attempt to balance between the 

number of inspection devices and the ability to control production quality [9]. Therefore, in practice, it is 

impossible to determine the actual per-machine yield rate given a limited number of inspection devices. 

Most manufacturers find it difficult to estimate the actual per-machine yield rate because it is affected 

by multiple factors, such as production process drift, the environment, machine condition, machine 

misconfiguration, and machine age [9–12]. To solve this problem, in this study, we propose a simple 

micro-yield-modeling approach to predict the per-batch production yield rate by using an estimated 

per-machine yield rate. In this case, we use the maximum likelihood method to estimate the per-machine 
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yield rate in a production process. The proposed approach requires relatively simple information, such as the 

production paths of products, number of raw products, and number of defective products detected by each 

inspection device to estimate the per-machine yield rate. Thereafter, to predict a batch yield rate, the 

proposed approach only requires the production paths of the products in the batch. 

The major challenge associated with the proposed approach is that the initial machine yield rate is 

unknown. Many options to this problem are available, including the expectation-maximization (EM) 

algorithm and the Newton–Raphson method [13]. Although iterations converge faster in the Newton–

Raphson method, its computational cost is higher. In addition, Springer and Urban [14] compared the EM 

algorithm to other alternatives and demonstrated that the EM algorithm is faster and incurs no significant 

overhead. Therefore, our proposed approach uses the EM algorithm, a widely used algorithm that 

demonstrably leads to convergence [15]. 

In this study, we aimed to predict the production yield rate by estimating the per-machine yield rate. To 

validate this approach to production yield rate prediction, we used time-series data from a so-called 

T-company. The data covered up to 70 weeks of real-world production that were collected using sensors and 

by human operators; a week of data covered thousands of batches of products and more than 200 machines in 

each week’s data. Our approach can predict the subsequent week’s production yield rate at an average 

accuracy of 91.86% and can predict the subsequent 5 weeks’ production yield rate at an average accuracy of 

>90%. However, because actual data on machine yield rate are limited and difficult to obtain, we performed 

simulations to validate the performance of the proposed approach by comparing the setup per-machine yield 

rate and the estimated per-machine yield rate. In the simulations, we used different production sequence 

lengths, number of batches, number of production machines, and ratio of inspection machines. Subsequently, 

we calculated how close the estimated per-machine yield rate could be to the actual per-machine yield rate. 

The results indicated that by using a data size similar to that of the actual data set for T-company, our 

approach provided good estimates at an average accuracy of 92.06%.  

The remainder of this paper is organized as follows. Section 2 introduces the existing approaches to 
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production yield rate prediction. Section 3 describes the maximum likelihood estimation of the per-machine 

yield rates based on the observation of defective products. Section 4 details our proposed approach to 

predicting the production yield rate based on the estimated per-machine yield rates. Section 5 describes the 

experiment and simulation design and results and discusses the implications of our approach. Finally, the last 

section concludes the paper and proposes directions for future research.  

2. Related Works 

Different manufacturers may implement different approaches to predict the production yield rate. In 

practice, a manufacturer could choose from several approaches that are either based on macro yield modeling 

or micro yield modeling [6]. For semiconductor manufacturers, the macro yield modeling approach considers 

only large a priori factors, whereas the micro-yield-modeling approach considers detailed information on 

different classes of defect categories, layouts, and process variations of circuit design. However, many of the 

approaches used in this area tend to predict a single production yield rate [16–18]. Therefore, when applied to 

batch production systems, the prediction accuracy of these approaches could be poor. 

Some existing approaches utilize time-series data as the input to predict the production yield rate. Chen 

and Chiu [18] proposed an approach based on time-series production data that uses an interval fuzzy 

number‑based fuzzy collaborative forecasting (IFN-based FCF) scheme to predict the production yield rate. 

Their approach performed well at a mean absolute percentage error (MAPE) of <2.17%. Although this 

approach requires simple data, such as time-series data on product yield rate, it requires human experts to 

construct the fuzzy yield forecast. Therefore, manufacturers that offer multiple customized products in large 

numbers of batches may find this approach to be excessively effort intensive. 

Jun et al. [16] proposed a micro approach to constructing a model to predict any defect in the 

production process. This approach requires several variables related to the production process, such as 

temperature, humidity, and other production variables. Initially, each product piece is labeled as either 

defective or good through machine learning. Subsequently, a recurrent neural network is used to analyze 
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time-series data and predict feature data. Finally, a machine learning algorithm is used to classify each piece 

based on the previous steps. This approach could be used to improve future yields by using the predictions to 

reduce the occurrence of defects, and it improved the yield by approximately 8.7% in a continual process. 

Although the production yield rate can be predicted using this approach, the computational costs are 

prohibitively high because deep learning is used [19] and the process must be executed at every equipment 

inspection run. Moreover, it is difficult to directly reapply this approach to other domains, such as batch 

production systems, because it demands the use of a particular statistical model. 

Many manufacturers offer high-quality customized products [1] and commonly use large numbers of 

batches in the manufacturing process. In this case, although many existing approaches can predict a single 

instance of the production yield rate, to the best of our knowledge, no approach can predict the per-batch 

yield rate.  

3. Maximum Likelihood Estimation of Per-Machine Yield Rate 

To accelerate the manufacture of large quantities of products, manufacturers may divide the 

manufacturing process into several jobs called batches. Then, each batch is tied to a batch number based on 

its bill of operation (BoO) [2] for future reference, where the BoO contains operational information, such as 

the sequence of stations for each batch. 

Fig. 1 illustrates how a batch of products can be processed with any machine in a station described in 

the BoO at the time of manufacturing. However, a manufacturer can use their machines for many purposes. 

Any machine can be used by only one BoO, and the other machines are used by one or several BoOs in any of 

their sequences. Moreover, a batch may use the very same machine more than once in its sequence, if that 

batch requires some stations to be revisited.  

Although a manufacturer may process many batches in a single day, each machine can only handle a 

single batch at a time, including the inspection equipment. Therefore, if the inspection equipment detects any 

defective products, we can assume that any of the previous machines, including the current machine, may 
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have generated the defective pieces. For example, in Figure 2, for each defective piece observed in the jth 

manufacturing step, all previous machines, including the current one (at the kth step), are suspicious 

machines, where 𝑘 ≤ 𝑗. Consequently, it becomes possible to estimate the yield rate of each production 

machine based on any observed defective pieces in each manufacturing process for each ith batch. 

 

The total number of defective products in a batch is equal to the sum of defective pieces in each 

manufacturing process. Therefore, in each manufacturing process, the number of defective pieces can be 

estimated from the yield rate of each machine through which the product passes through (let the variable be 

θ). Accordingly, based on FPY theory, we designed a likelihood function for each manufacturing step, which 

we use to estimate the per-machine yield rate, as encapsulated in (1) to (5). 

 

Let 𝑃(𝑌, 𝑍|𝜃)  be the likelihood that the sets Y (observed variable of the defective piece) and Z 

(indicator variable for the machine that generates the defective piece) occur given θ (the set of machine yield 

rates). 𝑃(𝑌, 𝑍|𝜃) is calculated from all batches in the manufacturing process, as given in (1), where 𝑦𝑖 and 

𝑧𝑖 are the elements of 𝑌 and 𝑍, respectively. In addition, let 𝐼 be the number of batches in the manufacturing 

process and let 𝑃(𝑦𝑖 , 𝑧𝑖|𝜃) be the likelihood function of each ith batch.  

 

Fig. 1 Example involving three bills of operation (A to C) that use four stations (W to Z) to produce four 

batches (A1 to C4). 

 

Fig. 2 Illustration of suspicious machines that are generating defective pieces. 
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𝑃(𝑌, 𝑍|𝜃) =∏𝑃(𝑦𝑖 , 𝑧𝑖|𝜃)

𝐼

𝑖=1

 (1) 

First, let 𝑁𝑖 be the number of processed pieces in the ith batch. Subsequently, equation (2) can be used 

to calculate 𝑃(𝑦𝑖, 𝑧𝑖|𝜃) based on the condition of each nth piece (of the ith batch in the manufacturing 

process) observed to be defective (value of 1) or in good condition (value of 0), represented as 𝑦𝑖𝑛. In this 

case, 𝑦𝑖𝑛 affects both 𝐹1 and 𝐹2.  

Let 𝑃𝑖𝑘 be the probability that a product piece will be good when using the machine associated with the 

kth manufacturing step of the ith batch (yield rate of a machine in the kth manufacturing step of the ith batch); 

let 𝐽𝑖𝑛 be the number of manufacturing steps completed in the processing of the nth piece of the ith batch. 

Subsequently, based on the defect rate of the production machines (represented as 1 − 𝑃𝑖,𝑘), 𝐹1 denotes the 

likelihood function of the defect rate if the nth piece of the ith batch is observed to be defective in a 

manufacturing process, as shown in (3). In each manufacturing process, the likelihood is the defect rate of the 

current manufacturing process (1 − 𝑃𝑖,𝑘 ) multiplied by the yield rate of previous production machines 

(∏ 𝑃𝑖,𝑠
𝑘−1
𝑠=1 ). 𝐹1can be used to estimate the indicator variable of the nth piece of the ith batch observed to be 

defective due to the machine used in the kth step, and it is denoted 𝑧𝑖𝑛𝑘. If the nth piece is observed to be 

defective (𝑦𝑖𝑛 = 1) in the jth step of the manufacturing process, 𝐹1 will provide an interval value between 0 

and 1. 

Moreover, based on the yield rates of the production machines, 𝐹2 is the likelihood function of the yield 

rate if the nth piece of the ith batch is observed to be a good piece in a manufacturing process, as shown in (4). 

The calculation is straightforward, involving multiplication with all the production machine yield rates 

denoted by each 𝑃𝑖𝑘 that was used in a specific batch. Therefore, if the nth piece is observed to be good 

(𝑦𝑖𝑛 = 0) in the jth step of the manufacturing process, the value of 𝐹1 is 1 and the value of 𝐹2 is between 0 

and 1.  

𝑃(𝑦𝑖, 𝑧𝑖|𝜃) =∏(𝐹1(𝑖, 𝑛) × 𝐹2(𝑖, 𝑛))

𝑁𝑖

𝑛=1

 
(2) 
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where   

𝐹1(𝑖, 𝑛) = (∏((1 − 𝑃𝑖𝑘)∏𝑃𝑖𝑠

𝑘−1

𝑠=1

)

𝑧𝑖𝑛;𝑘𝐽𝑖;𝑛

𝑘=1

)

𝑦𝑖𝑛

 (3) 

𝐹2(𝑖, 𝑛) = (∏𝑃𝑖𝑘

𝐽𝑖;𝑛

𝑘=1

)

1−𝑦𝑖𝑛

 (4) 

As shown in Fig. 1, because the BoO only specifies the production plan that uses a station sequence to 

process each batch, the manufacturer must still assign an available machine at each station in the station 

sequence to the batch during production. Hence, in (3) and (4), the yield rate of each machine (𝑃𝑀) is mapped 

using the i;k index, which gives us the notation 𝑃𝑀(𝑖;𝑘). However, this notation makes the equation less 

readable and more complex. Hence, we simplify 𝑃𝑀(𝑖;𝑘) as 𝑃𝑖𝑘  to improve readability. Finally, the most 

detailed version of our equation of 𝑃(𝑌, 𝑍|𝜃) is written in (5).  

Given that our objective is to estimate the yield rate of each machine, the likelihood in (5) can be used 

to estimate the defective pieces generated by each machine, which can subsequently be used to estimate the 

yield rate of each machine. 

𝑃(𝑌, 𝑍|𝜃) =∏∏((∏((1 − 𝑃𝑖𝑘)∏𝑃𝑖𝑠

𝑘−1

𝑠=1

)

𝑧𝑖𝑛;𝑘𝐽𝑖;𝑛

𝑘=1

)

𝑦𝑖𝑛

× (∏𝑃𝑖𝑘

𝐽𝑖;𝑛

𝑘=1

)

1−𝑦𝑖𝑛

)

𝑁𝑖

𝑛=1

𝐼

𝑖=1

 (5) 

 

4. Proposed Method 

Since our approach is related to the unknown or missing machine yield rate data, we propose a new 

EM-based algorithm to solve this problem. Using the algorithm, the estimated per-machine yield rate could 

be used to make the predictions. 

Our proposed approach aims to estimate the machine yield rate by iterating the EM algorithm until the 

most convergent result is obtained. The overall procedure of our approach is shown in the activity diagram in 

Fig. 3. To give a brief route of our explanation, first, in step (0), we need to preprocess and clean the raw data, 
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and we then guess the initial machine yield rates in step (1). Step (7) is the objective of each iteration, which 

improves the estimation of the yield rate of each machine based on the variables of the expected number of 

good pieces and the expected number of defective pieces generated by that machine. Both variables are 

estimated based on the observed defective pieces in step (2). Due to the fact that both variables can be 

calculated independently, we use the parallelism (bar) symbol after step (2). Hereinafter, while the expected 

number of good pieces could be calculated by steps (4), (5), and (6) sequentially, the expected number of 

defective pieces could be calculated by step (3). Next, the bottom bar symbol indicates that we need to use 

both variables in step (7). Finally, when the EM iteration stops in step (8), the future batch yield rates could be 

predicted using the prior estimated machine yield rates. We will explain the details of the algorithm in the 

following subsections. 

 

4.1. Preprocessing 

Because the raw production data provided by most manufacturers is not clean, data preprocessing and 

 

Fig. 3 Activity diagram of the proposed approach to estimate machine yield. 
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cleaning are required, as indicated by step (a) in Fig. 3. Several steps must be executed to initialize the 

calculation, such as preprocessing and cleaning the data. First, because the problem involves estimating the 

yield rate of each machine, we can exclude manufacturing process data related to manual or human labor. 

Second, because the quality inspection equipment is only installed in several machines, the observed 

defective pieces are set to zero for other machines where it is impossible to observe defective pieces. Third, a 

manufacturing process may be divided into two or more sessions, which may result in the addition of several 

distinct datasets related to the same manufacturing process. To address this problem, we must merge those 

sessions into one session. Finally, an example of the required preprocessed based on Fig. 1 is summarized in 

TABLE I. 

 

4.2. Initial Yield Rates  

Initially, because the machine yield rates are unknown, we must guess the yield rates of all the 

machines used in the manufacturing process, as indicated by step (b) in Fig. 3. Apart from random guessing, 

many approaches can be used to guess the yield rates. For example, we can use constrained least-squares to 

generate the initial machine yield rates based on the batch yield rates, as follows:  

arg min
𝜃 

∑(∑𝑞𝑖𝑘

𝐽𝑖

𝑘=1

− ln 𝑙𝑖)

2
𝐼

𝑖=1

 (6) 

TABLE I  

EXAMPLE OF REQUIRED PRODUCTION DATA. 

Batch 

Number 

Production 

Sequence 

Machine # of processed 

pieces 

# of observed 

defective pieces 

Batch A1 1 Mch-1 10 0 

 2 Mch-5 10 1 

Batch A2 1 Mch-1 32 0 

 2 Mch-6 32 3 

Batch B1 1 Mch-2 100 0 

 2 Mch-3 100 5 

 3 Mch-4 95 0 

 4 Mch-6 95 9 

… … … … … 
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subject to 𝑞𝑖𝑘 ≤ 0. In equation (6), let 𝐽𝑖 be the number of manufacturing steps for processing the ith batch; 

𝑞𝑖𝑘 the natural logarithm of 𝑃𝑖𝑘; 𝜃 is the set {𝑞𝑖𝑘|(1 ≤ 𝑖 ≤ 𝐼) ∧ (1 ≤ 𝑘 ≤ 𝐽𝑖)}; and 𝑙𝑖 is the yield rate of the 

ith batch of products. 

4.3. M-Step 

The yield rates 𝜃 are the initial input for E-Step of the proposed approach. Subsequently, the output of 

E-Step is used to improve the yield rate estimation in M-Step, which is the objective of each iteration, as 

indicated by step (h) in Fig. 3. The yield rate of a particular machine is the percentage of good pieces 

generated among all the pieces generated by that machine. Therefore, the objective of each iteration can be 

expressed as follows:  

𝑃𝑟(𝑚) =
𝑔𝑚

𝑔𝑚 + 𝑑𝑚
 (7) 

where 𝑃𝑟(𝑚) is the probability of obtaining good pieces by using machine m (yield rate of machine m). In 

addition, let 𝑔𝑚 be the expected total number of good pieces generated by machine m in every manufacturing 

step, and let 𝑑𝑚  be the expected total number of defective pieces generated by machine m in every 

manufacturing step. 

4.4. E-Step 

To obtain 𝑑𝑚 and 𝑔𝑚, we must estimate the number of defective pieces due to each suspicious machine 

where defective pieces are observed, as indicated by step (c) in Fig. 3. Because we have no prior knowledge 

about the per-machine yield rates, we assume that the yield rates of all the machines are close to 0.999. 

However, according to the principle of likelihood, when the inspection equipment observes defective pieces, 

all the previous machines, including the current machine, that are used to process that batch are suspicious. 

Therefore, we expect the shared probability of defective pieces to be distributed among the suspicious 

machines based on their yield rates. A particular machine could have a lower estimated yield rate if multiple 

batches yield many defective pieces after using that machine. Consequently, if any defective pieces are 
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observed in each manufacturing step of each batch, we must first estimate the likelihood that each particular 

machine has caused that defect (𝑧𝑖𝑛𝑘) by using (5). Hence, we have (8) to calculate the likelihood that the kth 

manufacturing step of the ith batch causes the nth piece to be defective (value of 1) with the given 𝜃, which is 

represented as 𝑃(𝑧𝑖𝑛𝑘 = 1|𝑦𝑖𝑛, 𝜃). 

𝑃(𝑧𝑖𝑛𝑘 = 1|𝑦𝑖𝑛, 𝜃) =

{
 

 
0; 𝑖𝑓 𝑦𝑖𝑛 = 0

(1 − 𝑃𝑖𝑘)(∏ 𝑃𝑖𝑠
𝑘−1
𝑠=1 )

∑ ((1 − 𝑃𝑖𝑡)(∏ 𝑃𝑖𝑢
𝑡−1
𝑢=1 ))

𝐽𝑖;𝑛
𝑡=1

; 𝑖𝑓 𝑦𝑖𝑛 = 1
 (8) 

For each nth piece observed to be defective in the jth manufacturing step, each particular kth 

manufacturing step is probably suspect. Therefore, let 𝐸[𝑧𝑖𝑛𝑘] be the expectation that a particular kth 

manufacturing step causes the nth piece of the ith batch to be defective, which is calculated using (9).  

𝐸[𝑧𝑖𝑛𝑘] = 0 ∗ 𝑃(𝑧𝑖𝑛𝑘 = 0|𝑦𝑖𝑛𝑘, 𝜃) + 1 ∗ 𝑃(𝑧𝑖𝑛𝑘 = 1|𝑦𝑖𝑛𝑘, 𝜃) 

𝐸[𝑧𝑖𝑛𝑘] = 𝑃(𝑧𝑖𝑛𝑘 = 1|𝑦𝑖𝑛𝑘, 𝜃) (9) 

For each jth manufacturing step of the ith batch, more than one piece may be observed to be defective. 

Consequently, several observed defective pieces have the same 𝐸[𝑧𝑖𝑛𝑘]. Subsequently, because we must 

estimate the number of defective pieces due to each suspicious machine, the likelihood estimation in (9) 

could be multiplied with the number of defective pieces observed in that manufacturing step, as in (10). 

𝑒𝑖𝑗𝑘 = 𝐸[𝑧𝑖𝑛𝑘] × 𝑏𝑖𝑗  (10) 

where 𝑒𝑖𝑗𝑘 is the expected number of defective pieces generated in the kth manufacturing step when 

any defective pieces of the ith batch are observed in jth manufacturing step; 𝑏𝑖𝑗is the number of defective 

pieces observed in the ith batch in the jth manufacturing step. 

To obtain 𝑑𝑚, we can combine the expected number of defective pieces for each machine m in each 

manufacturing process from all the batches, as indicated by step (d) in Fig. 3. The machine m is used in 

several manufacturing steps, which are registered in the set of (i,j,k) indexes of machine m, as in (11). 

Accordingly, we can determine the expected number of defective pieces for each machine m, as in (12). 
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𝑆𝑚 = {(𝑖, 𝑗, 𝑘)|∀𝑚𝑖𝑘 = 𝑚} (11) 

𝑑𝑚 = ∑ 𝑒𝑖𝑗𝑘
(𝑖,𝑗,𝑘)∈𝑆𝑚

 (12) 

In (11) and (13), let 𝑆𝑚 be the set of (i,j,k) indexes (as tuple elements) of all batches, which are the 

machines in each kth step of the manufacturing process of the ith batch of the products in which defective 

pieces are observed or detected when the jth step is completed. Let 𝑚𝑖𝑘 be the mth machine that is used to 

complete the kth manufacturing step of the ith batch. 

Meanwhile, 𝑔𝑚 can be determined by combining the number of observed good pieces at the end of the 

manufacturing process of the ith batch by using a particular machine (represented as 𝑓𝑖) and the total number 

of good pieces generated by that machine that will be defective in the subsequent manufacturing process 

(represented as 𝑥𝑚). However, to obtain 𝑥𝑚, we must first calculate the potential number of defective pieces 

based on 𝑒𝑖𝑗𝑘 in each manufacturing step, as in step (e) in Fig. 3, which can be expressed as follows:  

ℎ𝑖𝑗𝑘 = {
0; 𝑖𝑓 𝑗 = 𝑘

ℎ𝑖𝑗;𝑘+1 + 𝑒𝑖𝑗𝑘; 𝑖𝑓 𝑗 > 𝑘
 (13) 

where ℎ𝑖𝑗𝑘 is the number of potential defective pieces generated in the kth manufacturing step of the ith 

batch of products, in which defective pieces are observed or detected in the jth manufacturing step. 

Subsequently, we can combine the ℎ𝑖𝑗𝑘 of each machine in each manufacturing process of all the batches, as 

in step (f) in Fig. 3, which can be expressed as follows: 

𝑥𝑚 = ∑ ℎ𝑖𝑗𝑘
(𝑖,𝑗,𝑘)∈𝑆𝑚

 (14) 

Subsequently, because 𝑥𝑚 and 𝑓𝑖 are known, we can sum them into 𝑔𝑚, as in step (g) in Fig. 3. 𝑔𝑚 is 

related to a production sequence in which a particular machine may be used more than once in the sequence. 

Therefore, it can be written as 

𝑔𝑚 = 𝑥𝑚 + (∑𝑓𝑖 ∙ 𝑟𝑖𝑚

𝐼

𝑖=1 

) 
(15) 
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where 𝑟𝑖𝑚 is how many times machine m is used in the manufacturing process of the ith batch. 

4.5. Stop Condition 

The EM algorithm continues to iterate until a stopping condition is fulfilled. Two stopping conditions 

can be used, namely a convergence threshold and the maximum number of iterations. When the difference 

between the yield rates in the current iteration and those in the previous iteration calculated using the 

Euclidean distance [20] is lower than the convergence threshold, the stopping condition is met; otherwise, if 

the number of iterations reaches the defined maximum number of iterations, the algorithm is stopped. In our 

study, the threshold of 0.001, which will not exert any significant influence in further iterations, is deemed to 

be sufficient to stop the algorithm from iterating. 

4.6. Prediction of Production Yield Rate  

At the beginning of our approach, for each week’s data, we must estimate the yield rate of each 

machine. We assume that the per-machine yield rates estimated using the production data is a reliable basis 

for predicting the production yield rate. Consequently, the result of our approach can be used to predict the 

production yield rate, as in step (i) in Fig. 3. Based on the FPY of each batch, the yield rate of a batch is equal 

to the product of all the machines used by the batch. Therefore, the average accuracy of all the batches in a 

particular week can be expressed as follows: 

𝑎𝑐𝑐̅̅ ̅̅̅ =
∑ (1 − |(∏ 𝑃𝑖𝑗

𝐽𝑖
𝑗=1 ) − 𝑙𝑖|)

𝐼
𝑖=1

𝐼
 (16) 

where 𝑎𝑐𝑐̅̅ ̅̅̅ represents the average accuracy of our approach’s result in estimating the yield rate of all 

batches one period or one-week data. 

In this study, we used the data of only one particular week to predict the production yield rate in the 

following weeks, up to 5 consecutive weeks. However, in the future, the production process may use a 

machine that is not used in the current week and does not have a yield rate estimate. Although we can use 

older production data for that particular machine, to simplify the experiment, we ignore this case and exclude 
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future production batches that use any machine with no yield rate estimation in the current week. 

5. Experimental Results and Discussions 

We used data from T-company (70 weeks of data) to evaluate the prediction performance of our 

proposed approach, as described in subsection 5.1. To determine why the proposed approach achieved such a 

high accuracy, we conducted several simulations, as described in subsection 5.2. Thereafter, we discuss the 

proposed approach based on the experimental and simulation results. 

 

5.1. Experimental Results Obtained Using T-Company Data 

In our study, we used a large, real-world, 70-week data set from T-company on its manufacturing. The 

statistics of these real-world data are summarized in TABLE II. To evaluate the performance of our approach, 

we used 1-week data to construct our prediction model; subsequently, we used the model to predict the 

consequent average batch production yield rate for the following five weeks.  

As shown in Fig. 4, the predicted batch yield rates for week one had an average accuracy of 91.86%. 

Moreover, the results indicated that the proposed approach could yield predictions for weeks 2 to 4 (next 

month) at an average accuracy >90%. However, the predictions for weeks 3 and beyond were more uncertain 

because of a sharp increase in the standard deviation. 

According to Fig. 5, the plots for the five predictions (weeks 1 to 5) were extremely similar, which 

explained why the prediction accuracy values in Fig. 4 were extremely similar. Moreover, the prediction 

accuracy for week 5 could be as low as 79% in some rare cases. Thus, the standard deviation of the prediction 

for the consequent fifth week was larger. In subsection 5.3, we discuss why the prediction accuracy changed. 

TABLE II  

STATISTICS OF T-COMPANY DATA FOR UP TO 70 WEEKS. 

Description Min Max Mean Stdev 

Number of machines used  194 250 222 10.2 

Number of batches 287 1,075 747 154.3 

Defective pieces in a batch 0 163,072 1,140 3325.0 

Number of steps in a batch 1 59 21 7.0 

Inspection steps in a batch 1% 9% 8% 1% 
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Fig. 4 Average accuracy of T-Company’s batch yield rate prediction when using the proposed approach. 
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Fig. 5 Average accuracy of each prediction of T-Company data. 
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5.2. Simulations of Machine Yield Rate 

For most manufacturers, including T-company, actual per-machine yield rate data are unavailable 

because it is impractical to use quality inspection equipment in all production sequences. Therefore, we 

performed simulations with generated per-machine yield rates and production data. In these simulations, we 

used production data to estimate the per-machine yield rate. Thereafter, we performed a sensitivity analysis 

to evaluate the performance of our approach for each manufacturing data set of a given size. We used several 

variables in the experiments, which were the set of machines (50, 250, and 500 machines), set of batches 

(500–5000 batches in increments of 500, and a special set of 10 batches at minimum), set of average batch 

steps (20 and 30 steps), and set of average inspections ratio (10% and 30% of batch steps). 

  

5.2.1. Machine and batch generation 

At the start of the simulation, the per-machine yield rates were generated; then, the batches were 

generated based on the machine data. In one set of machine simulations, we used a random normal 

distribution along with the distribution parameters given under point A in TABLE III to determine the yield 

rate of each machine. Subsequently, we installed inspection devices on 30% of the production machines, and 

these inspection devices could be turned off by manufacturers during production for whatever reason. 

After obtaining the machine data, we could generate batch attributes, such as the number of batch steps, 

number of raw pieces, and number of inspections in a batch, as points B, C, and D, respectively, in TABLE 

III. After generating the number of steps, we randomly assigned inspection machines to several steps (based 

on the combinations explained in subsection 5.2); the remaining steps featured random “normal machines.” 

In this case, a machine could be used more than once to process a particular batch. Then, the sequence of the 

machine in the batch steps was shuffled, but the last step must involve the inspection machines.  

Second, we generated the number of defective pieces in each step. For each step, we randomized the 

yield rate of the machine by approximately ±10% of its original yield rate and calculated the number of 

defective pieces from the current number of raw pieces and the modified machine yield rate. Subsequently, 
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the remaining good pieces were carried forward to the next batch step.  

 

Third, to simulate a real-world manufacturing environment, the number of defective pieces in each step 

was hidden and accumulated until the subsequent inspection. The batch steps with the inspection machines 

were the only steps in which the defective pieces could be observed, as given by point E in TABLE III. This 

finding supported by studies in which the observation accuracy had a tolerance of 10%–30% [21,22], 

meaning that only 70%–90% of the accumulated defective pieces were observed; the remaining 

unobservable defective pieces were accumulated for the next inspection. In this case, the last inspection 

machine was set to have 0% tolerance, and all the remaining defective pieces were then observed. 

Finally, each combination was used in our approach to estimate the yield rate of each machine. 

However, because we had to run the approach 10 times for each combination, the machine and batch data 

were regenerated. For this reason, we expected to obtain marginally different results in each run, and we used 

the average result as our final result. 

 

5.2.2. Simulation results 

Fig. 6 presents the results of our simulation experiments, which demonstrate the good performance of 

our approach in estimating the yield rates of the machines in different simulation combinations. A 

manufacturer that uses 50 machines for production with an average of 20 batch steps may be required to 

produce fewer than 500 batches to obtain an accuracy higher than 90%; a production run with at least 

TABLE III  

DISTRIBUTION PARAMETERS IN EACH EXPERIMENT COMBINATION. 

# Description Min Max Mean Stdev 

A Machine yield rates 0 1 0.99 0.1 

B Number of raw pieces 1000 20000 10000 2000 

C Number of batch steps 5 50 20 or 30* 7 

D 
Number of inspection 

machines in each batch 

2 machines batch length 10% or 30% 

of batch length* 

2 

E 
Observation accuracy of 

inspection equipment 

88% 100% 90% 2% 

* based on the simulation combination 
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approximately 1,000 batches may be required to obtain the best accuracy, as indicated by point A in Fig. 6. 

However, when a manufacturer uses approximately 250 machines for production with the same number of 

batch steps, the manufacturer may be required to produce at least approximately 4,000 batches to obtain the 

best accuracy, as indicated by point B in Fig. 6. Based on the operational chart point E in Fig. 6, which is 

similar to the data model of T-company, our approach could provide a good estimate of the per-machine yield 

rate at an average accuracy of 92.06%.  

 

A manufacturer with 500 machines and an average of 20 batch steps in their production may be 

required to produce at least approximately 1,000 batches to obtain an accuracy higher than 90%, as indicated 

 

Fig. 6 Operational chart of the proposed approach to estimate the per-machine yield rates. 



 20 

by point C in Fig. 6. At the same number of machines, an average of 30 batch steps led to a decrease in 

accuracy, as indicated by both points D in Fig. 6. However, by using approximately 30% of the inspection 

machines in each batch, as indicated by point D2 in Fig. 6, the accuracy increased compared with that when 

using only approximately 10% of the inspection machines in each batch, as indicated by point D1 in Fig. 6.  

5.3.  Discussion 

According to the experiments in section 5.1, our approach accurately predicted batch yield rates. In the 

case of T-company, although our approach could generate predictions for periods longer than 1 month ahead, 

we suggest that predictions should be made for only 1–2 weeks (or periods) ahead because the standard 

deviation increases when predictions are made for periods further into the future. This may be due to the 

following reasons. First, the machines used in future weeks may be different, which may not be used in the 

week where the machine yield rates were estimated. Hence, fewer batches can be predicted. Second, the yield 

rates of some machines estimated in a particular week may be affected by machine wear and tear in the 

following weeks, which may lower their actual yield rates. Conversely, they may undergo maintenance work 

in the following week, which may improve their actual yield rates. Third, in rare cases, our approach predicts 

batch yield rate at an accuracy that is as low as 79%. In this study, we observed that this was caused by the 

processing of a few batches in the week when the per-machine yield rates were estimated, which resulted in 

less accurate estimates of per-machine yield rate. This observation is supported by Fig. 7, in which the 

fluctuation of the plot of the number of batches shows similarity to the plot of week 5 prediction in Fig. 5. 

In this study, although we could not compare the prediction results for the production data of different 

manufacturers, the simulation of machine yield rates could be used as a benchmark when our proposed 

approach is used. The prediction results of T-company’s cases were good because the simulation indicated 

that the estimated average per-machine yield rates were very close to the average actual per-machine yield 

rates, where the estimation error was approximately 8%. However, our simulation indicated that the data set 

was more random if more machines were used in production. This makes our approach less accurate. In this 
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case, we suggest for more batches to be used to obtain accurate estimates, but doing so could be difficult in 

practice. Moreover, with the same number of machines, long sequences of each batch (longer batch steps) 

reduces the accuracy of our approach. This is due to the effect of the principle of likelihood on our E-step, as 

explained in subsection 4.4, which may lead to underestimation for a greater number of machines when 

defective pieces are observed.  

 

The reduction in accuracy caused by a long sequence can be alleviated by increasing the number of 

batches and the density of inspection stations, which, however, increases production cost. Therefore, 

managers must balance between estimation accuracy (through having more inspection stations) and 

production cost [23]. Although the number of machines, number of batches, and average batch steps are the 

most important variables in our approach, the results indicate that the density of inspection stations should 

increase as the average number of batch steps increases. Accordingly, based on the simulation results 

presented in subsection 5.2.2, our approach works well for small- and medium-scale manufacturers, who use 

500 or fewer machines and have an average batch sequence with 30 or fewer steps. 

 

Fig. 7. The number of batches each week on T-Company data  
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6. Conclusions and Directions for Future Research 

The proposed approach is a useful solution to predict the production yield rate, based on the 

per-machine yield rate estimations. Using the T-company data, while our approach could provide next week's 

prediction of production yield rate with an average accuracy of 91.86%, and continuously over 90% for 5 

consecutive weeks (over 1 month), it is suggested to predict the batch yield rates for only one or two weeks. 

Besides, the EM Algorithm proved to be the current best solution in our approach. Since it helps to calculate 

the unknown machine yield rate based on the observed defective pieces in the production data. In our 

experiment, by using generated data similar to the T-company data size, our approach could provide a good 

estimation of the per-machine yield rates, which has an average accuracy of 92.06%.  

On the other hand, based on our simulation results, our approach provides a good result for any 

manufacturers with 500 or less machines with an average of 30 or shorter batch sequence. In this case, the 

number of machines, the number of batches, and the average of batch steps are the most important variables 

to estimate the per-machine yield rate. Our proposed approach may be one of the reasonable approaches that 

could be used by manufacturers, to obtain their estimated per-machine yield rate. Hereinafter, by using our 

approach, the manufacturer could predict the production yield rate, to get better prepared for their production, 

and analyze its costs.  

Our lightweight approach uses only production data without too many parameters. Hence, 

manufacturers with limited resources can implement this approach with ease. However, our approach has 

several limitations related to batch specifications and flow-shop manufacturing (or manufacturing of a 

similar type). First, our approach estimates the machine yield rate based on their station sequence. Although 

the approach is accurate, it may provide unexpected results for fixed sequences of machine stations because 

the machines at the start of the sequence are necessarily considered suspicious. Hence, their yield rates may 

be lower than those of the machines in the final sequence. This means that unexpected results may be 

obtained in flow-shop manufacturing (or similar). Second, based on the design of our approach, any 

suspicious machine is assigned a share of defective pieces based on its current yield rate, regardless of its step 
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or station number. These shares of defective pieces in each batch are summed up into a single value for each 

machine. For this reason, our approach requires the processing of production data based on batch 

specifications. We found that the machines used to process different batch specifications may provide 

different batch yield rates. We aim to address these two limitations in future research. 
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Appendix 

A. Notation descriptions 

A.1 List of variables with known values 

Notation Description 

𝑏𝑖𝑗 the number of defective pieces observed in the ith batch in the jth manufacturing step. 

𝑓𝑖 the number of observed good pieces at the end of the manufacturing process of the ith 

batch by using a particular machine 

𝐼 the number of batches in the manufacturing process 

𝐽𝑖 the number of manufacturing steps for processing the ith batch 

𝐽𝑖𝑛 the number of manufacturing steps completed in the processing of the nth piece of the 

ith batch 

𝑙𝑖 the yield rate of the ith batch of products. 

𝑚𝑖𝑘 the mth machine that is used to complete the kth manufacturing step of the ith batch 

𝑁𝑖 the number of processed pieces in the ith batch 

𝑟𝑖𝑚 how many times machine m is used in the manufacturing process of the ith batch. 

𝑆𝑚 the set of (i,j,k) indexes (as tuple elements) of all batches, which are the machines in 

each kth step of the manufacturing process of the ith batch of the products in which 

defective pieces are observed or detected when the jth step is completed 

𝑦𝑖𝑛 the condition of each nth piece (of the ith batch in the manufacturing process) observed 

to be defective (value of 1) or in good condition (value of 0), 

A.2 List of variables with unknown values or to be estimated 

Notation Description 

𝑎𝑐𝑐̅̅ ̅̅̅ the average accuracy of our approach’s result in estimating the yield rate of all batches 

one period or one-week data. 

𝑑𝑚 the expected total number of defective pieces generated by machine m in every 

manufacturing step. 

𝑒𝑖𝑗𝑘 the expected number of defective pieces generated in the kth manufacturing step when 
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any defective pieces of the ith batch are observed in jth manufacturing step 

𝐸[𝑧𝑖𝑛𝑘] the expectation that a particular kth manufacturing step causes the nth piece of the ith 

batch to be defective 

𝐹1(𝑖; 𝑛) the likelihood function of the defect rate if the nth piece of the ith batch is observed to 

be defective in a manufacturing process 

𝐹2(𝑖; 𝑛) the likelihood function of the yield rate if the nth piece of the ith batch is observed to be 

a good piece in a manufacturing process 

𝑔𝑚 the expected total number of good pieces generated by machine m in every 

manufacturing step 

ℎ𝑖𝑗𝑘 the number of potential defective pieces generated in the kth manufacturing step of the 

ith batch of products, in which defective pieces are observed or detected in the jth 

manufacturing step 

𝑃𝑖𝑘 the probability that a product piece will be good when using the machine associated 

with the kth manufacturing step of the ith batch (yield rate of a machine in the kth 

manufacturing step of the ith batch). 

𝑃(𝑌, 𝑍|𝜃) the likelihood that the sets Y (observed variable of the defective piece) and Z (indicator 

variable for the machine that generates the defective piece) occur given θ (the set of 

machine yield rates). 

𝑃(𝑦
𝑖
, 𝑧𝑖|𝜃) the likelihood function of each ith batch. 

𝑃(𝑧𝑖𝑛𝑘 = 1|𝑦𝑖𝑛, 𝜃) the likelihood that the kth manufacturing step of the ith batch causes the nth piece to be 

defective (value of 1) with the given 𝜃 

𝑃𝑟(𝑚) the probability of obtaining good pieces by using machine m (yield rate of machine m). 

𝑞𝑖𝑘 the natural logarithm of 𝑃𝑖𝑘 

𝑥𝑚 the total number of good pieces generated by that machine that will be defective in the 

subsequent manufacturing process 

𝑧𝑖𝑛;𝑘 the indicator variable of the nth piece of the ith batch observed to be defective due to 

the machine used in the kth step 

𝜃 the set {𝑞𝑖𝑘|(1 ≤ 𝑖 ≤ 𝐼) ∧ (1 ≤ 𝑘 ≤ 𝐽𝑖)} 
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B. Equations list 

Equation Eq. Number 

Simple version of likelihood 

𝑃(𝑌, 𝑍|𝜃) =∏𝑃(𝑦𝑖, 𝑧𝑖|𝜃)

𝐼

𝑖=1

 
1 

The likelihood for each batch 

𝑃(𝑦𝑖 , 𝑧𝑖|𝜃) =∏(𝐹1(𝑖, 𝑛) × 𝐹2(𝑖, 𝑛))

𝑁𝑖

𝑛=1

 
2 

𝐹1(𝑖, 𝑛) = (∏((1 − 𝑃𝑖𝑘)∏𝑃𝑖𝑠

𝑘−1

𝑠=1

)

𝑧𝑖𝑛;𝑘𝐽𝑖;𝑛

𝑘=1

)

𝑦𝑖𝑛

 3 

𝐹2(𝑖, 𝑛) = (∏𝑃𝑖𝑘

𝐽𝑖;𝑛

𝑘=1

)

1−𝑦𝑖𝑛

 4 

Complete Likelihood Function 

𝑃(𝑌, 𝑍|𝜃) =∏∏((∏((1 − 𝑃𝑖𝑘)∏𝑃𝑖𝑠

𝑘−1

𝑠=1

)

𝑧𝑖𝑛;𝑘𝐽𝑖;𝑛

𝑘=1

)

𝑦𝑖𝑛

× (∏𝑃𝑖𝑘

𝐽𝑖;𝑛

𝑘=1

)

1−𝑦𝑖𝑛

)

𝑁𝑖

𝑛=1

𝐼

𝑖=1

 
5 

Constrained Least square 

arg min
𝜃 

∑(∑𝑞𝑖𝑘

𝐽𝑖

𝑘=1

− ln 𝑙𝑖)

2
𝐼

𝑖=1

 

subject to 𝑞𝑖𝑘 ≤ 0 

6 

Updating machine yield rates 

𝑃𝑟(𝑚) =
𝑔𝑚

𝑔𝑚 + 𝑑𝑚
 

7 

Likelihood of kth manufacturing steps generates defective pieces 

𝑃(𝑧𝑖𝑛𝑘 = 1|𝑦𝑖𝑛, 𝜃) =

{
 

 
0; 𝑖𝑓 𝑦𝑖𝑛 = 0

(1 − 𝑃𝑖𝑘)(∏ 𝑃𝑖𝑠
𝑘−1
𝑠=1 )

∑ ((1 − 𝑃𝑖𝑡)(∏ 𝑃𝑖𝑢
𝑡−1
𝑢=1 ))

𝐽𝑖;𝑛
𝑡=1

; 𝑖𝑓 𝑦𝑖𝑛 = 1
 

8 

𝐸[𝑧𝑖𝑛𝑘] = 0 ∗ 𝑃(𝑧𝑖𝑛𝑘 = 0|𝑦𝑖𝑛𝑘, 𝜃) + 1 ∗ 𝑃(𝑧𝑖𝑛𝑘 = 1|𝑦𝑖𝑛𝑘, 𝜃) 

𝐸[𝑧𝑖𝑛𝑘] = 𝑃(𝑧𝑖𝑛𝑘 = 1|𝑦𝑖𝑛𝑘, 𝜃) 
9 



 30 

Estimation number of the defective pieces 

𝑒𝑖𝑗𝑘 = 𝐸[𝑧𝑖𝑛𝑘] × 𝑏𝑖𝑗 
10 

Set of (i,j,k) indexes 

𝑆𝑚 = {(𝑖, 𝑗, 𝑘)|∀𝑚𝑖𝑘 = 𝑚} 
11 

expected quantity of defective pieces 

𝑑𝑚 = ∑ 𝑒𝑖𝑗𝑘
(𝑖,𝑗,𝑘)∈𝑆𝑚

 
12 

the quantity of potential defective pieces 

ℎ𝑖𝑗𝑘 = {
0; 𝑖𝑓 𝑗 = 𝑘

ℎ𝑖𝑗;𝑘+1 + 𝑒𝑖𝑗𝑘; 𝑖𝑓 𝑗 > 𝑘
 

13 

the quantity of all potential defective pieces 

𝑥𝑚 = ∑ ℎ𝑖𝑗𝑘
(𝑖,𝑗,𝑘)∈𝑆𝑚

 
14 

expected quantity of all good pieces 

𝑔𝑚 = 𝑥𝑚 + (∑𝑓𝑖 ∙ 𝑟𝑖𝑚

𝐼

𝑖=1 

) 
15 

Batch yield accuracy 

𝑎𝑐𝑐̅̅ ̅̅̅ =
∑ (1 − |(∏ 𝑃𝑖𝑗

𝐽𝑖
𝑗=1 ) − 𝑙𝑖|)

𝐼
𝑖=1

𝐼
 

16 
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